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0. Introduction

This paper is devoted to a problem that occupies a central position

in economic theory and whose origins lie in Augustin Cournot's

Recherches sur les Principes Mathematiques de la Theorie des Ri chesses *

The setting is that of a group of players each of whom maximizes his

self-interest as reflected in an individual pay-off function defined on

an individual strategy set. What makes the problem interesting is that

the optimum choice of any player depends on the actions of all the

other players, this dependence being reflected in the pay-off function

or in the strategy set or both. As such, this is a problem par

excellence in what is now termed non-cooperative game theory.

A prototype of such a problem is Cournot's (1838) example of two

profit maximizing firms each of whose profits depend not only on their

individual output levels but also on that chosen by their rival firm.

The solution proposed by Cournot consisted of a pair of output levels

(x,y) such that x is the profit maximizing output level for the first

firm when the second is restricted to produce y and y is the profit

maximizing output level of the second firm when the first is restricted

to x. Such an equilibrium notion was formalized by Nash (1950) and

shown to exist in a setting with a finite number of players, each with

an identical finite dimensional strategy set. Two years later, Debreu

(1952) generalized the results of Nash and gave an existence proof

based on Kakutani's (1941) fixed point theorem. It is of interest

that Debreu referred to his result as a "social existence theorem" and

that this theorem constituted an important ingredient in one of the

2
first general proofs of the existence of competitive equilibrium.
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Recent work has extended Debreu's result on the existence of

Cournot-Nash equilibria along several directions; namely (i) cardinality

of the set of players, (ii) nature of the pay-off functions, (iii)

dimensionality of the strategy sets. In particular, Cournot-Nash equi-

libria have been shown to exist in settings with (i) a continuum of

players, (ii) non-ordered preferences, and (iii) strategy sets in

Banach spaces. The work, is far from complete—we have no result, for

example, that simultaneously incorporates (i), (ii) and (iii)—but it

is clear that substantial progress has been made. We report on this

here.

The underlying theme of our presentation is that all these exten-

sions are suitable modifications of Debreu's original argument and

essentially follow the guideposts laid out by him. As such, this paper

could be seen essentially as underscoring the robustness of Debreu's

(1952) proof.

The plan of the paper is to show the existence of Cournot-Nash

equilibria in settings which are increasingly generalized. Section 1

presents the Nash-Debreu theorem in the context of a game with a finite

number of players, with finite dimensional strategy sets and with pay-

offs generated by functions. Section 2 considers an abstract economy a

la Shafer-Sonnenschein. Here, the pay-off is generated by non-ordered

binary relations and the strategy sets also depend on the choices of

the other players. In Section 3, we consider a continuum game where

the set of players is a measure space of agents but the strategy sets

are identical for all players and the pay-off functions are linear

functions on the individual strategy sets. In this, our assumptions on
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the game are closer to Nash than to Debreu. In Section 4, we remedy

this and consider generalized continuum games . These are games as in

Debreu but with the added assumption that the set of players is an

3
abstract measure space of agents. In Section 5, we consider an

abstract continuum economy which is an abstract economy but with the

set of players given by an abstract measure space. Section 6 is the

final section of the paper and is devoted to generalized continuum

games defined on a_ Banach space . This is the only section in the paper

in which the strategy sets are not subsets of a finite dimensional

Euclidean space R . It is worth pointing out that we have no results

to report on abstract continuum economies defined on a Banach space.

There are three major omissions in this paper. First, we do not

discuss the recent results of Mas-Colell (1983) whose formulation of

the dependence of the optimum choice of one player on the choices of

the remaining others is drastically different from ours. His for-

malization of a continuum game is based on the "distribution" approach

of Hart-Hildenbrand-Kohlberg (1974). A second omission is the work of

Fan (1966), Browder (1968), Ma (1969), Toussaint (1982), Yannelis and

Prabhaker (1983a and b) . They do not consider a measure space of

agents but an arbitrary denuraerable or non-denumerable set of agents.

This shows up, in particular, in their continuity assumptions on the

pay-off functions and strategy sets. It would be of interest to relate

the results presented in the sequel to those of Mas-Colell and to those

stemming from the work of Fan-Browder. In this context, we may remark

that our formulation of a model consisting of an infinity of agents

each of whom makes choices from an infinite dimensional strategy set,
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is strictly along the lines laid out in Aumann (1964) and Bewley

(1973). Our third omission relates to the existence of pure strategy

equilibria as considered in Schmeidler (1973). Whereas it is certainly

true that a consideration of these equilibria is beyond the pale of a

paper devoted to the Cournot-Nash theorem, pure strategy equilibria are

a primary motivation for considering games with a continuum of players.

However, this topic merits an extended treatment in its own right and,

in addition to Schmeidler's basic paper, we refer the reader to Khan

(1982b, 1983).

A final word of exposition. This paper is written primarily for

economists, and as such we have been cavalier in terms of theorems

well-known to them but somewhat pedantic in terras of other results. An

example of this is that we do not state Kakutani's fixed point theorem

but do state and provide a reference for the proof of the Dunford-

Pettis theorem on the characterization of weakly compact sets in the

4
space of integrable functions. Nevertheless, we hope that this

exposition will also be useful to mathematicians both in suggesting new

problems and in showing how relatively recent theorems in functional

analysis seem tailor-made for a problem whose origins lie in political

economy.

1. The Nash-Debreu Theorem .

We begin with Debreu's (1952) generalization of Nash's (1950)

theorem on the existence of equilibria [subsequently . Nash equilibria]

5 %
in a game T with a finite set of players, each with strategy sets in R

and with preference rankings given by pay-off functions defined on

these strategy sets. Accordingly, let the set of players T be given by
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th I
(1, 2, ...., n) , the strategy set of the t— player by X(t) cr R and

his pay-off function by u : X * R where X = II X(t). We can now
teT

present

Definition 1.1 . A Nash equilibrium of a game Y is an element x* =

(x*(l), ...., x*(n)) e X such that for all t in T

u
t
(x*) > u

t
(x*(l), , x*(t-l), y, x*(t+l), , x*(n))

for all y £ X(t).

The Nash-Debreu theorem can be stated once we recall that a func-

l
tion f : D + R, D a convex subset of R , is said to be quasi-concave if

for all x, y in D

f(Xx + (l-X)y) 2 Min (f(x), f(y)) for all X e (0,1)

Theorem 1.1 (Nash-Debreu) : If, for all t in T, X(t) is nonempty, con-

vex and compact, and u is a continuous function which is quasi-concave

on X(t), there exists a Nash equilibrium for the game T.

Theorem 1.1 is a simple consequence of Berge's (1966) maximum

theorem and Kakutani's (1941) fixed point theorem. Since proofs of

subsequent theorems are elaborations and modifications of Debreu's

basic argument, a somewhat leisurely development of the steps of his

proof is warranted.

The proof revolves around a mapping a : X * X where

a = a. x a„ x .... x a ,
1 Z n

a : X * X(t) with a (x) = Arg Max u (x(l) .... x(t-i), y, x(t+l), .... x(n))
yeX(t)
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It is clear that a fixed point of a yields a Nash equilibrium. In

order to apply Kakutani's theorem to a, one has to establish the

following five claims.

1. Compactness of X.

2. Noneraptiness and convexity of X.

3. For each x in X, nonemptiness and convexity of a(x).

4. For each t in T, upper seraicontinuity of o

5. Upper seraicontinuity of a.

Let us take each claim in turn. (1) follows by hypothesis given

I
that the set of players is finite and that each X(t) is a subset of R .

(2) is trivial. The first assertion in (3) follows from continuity of

u over the compact set X(t) and the second assertion is a consequence

of the quasi-concavity of u over X(t). Once we have (4), it is easy

to show the validity of (5) and (4) is a straightforward consequence of

Berge's theorem. Since we shall have a need for it in the sequel, it

is worthwhile to have a general statement of Berge's theorem.

Theorem 1.2 (Berge) ; Let X and Y be topological spaces. If f is a

continuous numerical function of Y and $ is a continuous (set-valued)

mapping of X into Y such that for each x, $(x) *
<J>,

then the numerical

function M(x) = Max f(y) is continuous in X and the mapping
ye$(x)

Arg Max f(y) is an upper semi continuous mapping of X into Y.

ye$(x)

Proof : See Berge (1966, p. 116)

We need only remind the reader that a continuous set-valued mapping

is one which is both upper and lower semi continuous. The reader has
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also undoubtedly noticed that in the application of Theorem 1.2 to

Claim 4, the analogue of $ is trivially continuous.

2. The Shafer-Sonnenschein Theorem .

The Nash-Debreu theorem assumes that each player's preference rank-

ing is complete and transitive. Note that a preference ranking of a

player t is a binary relation ~ defined on X(t) x X(t) such that for

t

all x, y in X(t)

x ~ y iff u (z(l), ...., z(t-l), x, z(t+l), ...., z(n)) >_

t

u (z(l), ...., z(t-l), y, z(t+l), ...., z(n)) for all

z(i) £ X(i), i * t.

A natural question arises as to whether the Nash-Debreu theorem can be

extended to a set-up where each player's preference ranking ~ is non-
t

ordered, i.e., neither complete nor transitive. That this can indeed

be accomplished was shown by Shafer-Sonnenschein (1975) once Mas-Colell

(1974) had given reason to believe that such a result could indeed be

proved.

Before stating the Shaf er-Sonnenschein theorem, we note two points

of exposition. Firstly, they formalize the preference ranking as a

set-valued mapping P : X + X(t) where P (x) has the interpretation of

being the set of strategies which are preferred (strictly) by player t

to x(t). We leave it to the reader to convince himself that it is a

simple matter to go from ~ to P and vice versa provided the dependence

>
t

of ~ on the other players' strategies is made explicit. Secondly,
t

Shafer-Sonnenschein allow each player's strategy set to depend on the
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strategy choices of the other players. They do this by introducing an

additional mapping A : X X(t). Thus, in the Shafer-Sonnenschein

set-up, a game r consists of a finite set of players T each of whom has

a strategy set X(t), a choice (set-valued) mapping A : X »> X(t) and a

preference mapping P : X * X(t). With these reformulated primitives,

we shall follow Shaf er-Sonnenschein and refer to V as an abstract

economy .

The only remaining point concerns the formal definition of a Nash

equilibrium for the abstract economy T. This is given by

Definition 2.1 . A Nash equilibrium of an abstract economy V is an ele-

ment x* = (x*(l), ...., x*(n)) e X such that for all t in T,

x*(t) £ A (x*) and P (x*)r\ A (x*) = $.

A little reflection will convince the reader that Definition 2.1 is a

direct generalization of Definition 1.1 to a setting with non-ordered

preferences.

We can now state

Theorem 2.1 (Shafer-Sonnenschein) ; If, for all t in T,

(i) X(t) is nonempty, convex and compact,

(ii) A is a continuous correspondence such that for each x in X,

A (x) is nonempty and convex,

(iii) P has an open graph in X x X such that for each x in X,

x(t) i Con P (x), [Con(B) is the convex hull of the set B]

,

there exists a Nash equilibrium for the abstract economy P.
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It seems fair to say that at first sight, it is difficult to see

how the structure of the proof of Theorem 1.1 can be modified to con-

struct a proof of Theorem 2.1. That it can be done follows from an

ingenious construction of a pseudo pay-off function corresponding to

each of the preference mappings P . We turn to this.

Shafer-Sonnenschein [also see Shafer (1974)] define a real valued

function u : X(t) x X ->- R such that

u (z,x) = Infimum p[(z,x), y]

yeGraph P

where Graph P = {(z,x) e X(t) x X : z i P (x)} and p is the Euclidean

c 8
metric. Note that the Graph P is a closed set by hypothesis and,

given the compactness of X(t) and hence of X, u (•) is well-defined.

Note also that

U
t
(z,x) > iff z e P

t
(x) (*)

This simple and elegant construction (one may be forgiven for recalling

Urysohn's lemma) can now be used in tandem with the Debreu argument to

prove Theorem 2.1. Let us sketch the basic steps.

As in the proof of Theorem 1.1, let a : X+X, a = a, x .... xa,

and a : X + X(t) where a (x) = Con [Arg Max U (z,x)].
zeA (x)

As before, we appeal to Kakutani's theorem to guarantee a fixed point

for a. Claims 1 to 5 remain as before and are as easy to establish.

The only marginal difference lies in the application of Berge's theorem

for which we now have to utilize the continuity hypothesis on the

correspondence A and a subsidiary claim that
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6. the convex hull of an upper semicontinuous mapping is upper

semicontinuous.

I 9
The fact that 6 is true in the setting of R is well-known.

But, of course, a price has to be paid at some stage for working

with the pseudo utility function and this consists in the fact that it

is no longer obvious that the fixed point of a is indeed a Nash equi-

librium for r. This follows from a somewhat delicate argument.

Let x* be a fixed point of a and let H (x*) = Arg Max u (z,x*).
zeA (x*)

Since A (x*) is convex, certainly x*(t) £ A (x*) for all t in T. Let

us suppose that for some t, A (x*) O P (x*) = z. Since z e P (x*),

certainly as a consequence of (*), u (z,x*) > 0. But this implies that

u (y,x*) > for all y e H (x*). By a second appeal to (*), this shows

that H (x*) O P (x*). But x*(t) e a (x*) = con H (x*) CL con P (x*),

and we obtain a contradiction.

1.3. A Theorem of Schmeidler .

In this subsection we abandon non-ordered preferences as in Shafer-

Sonnenschein and pursue another generalization of the Nash-Debreu

theorem. This is Schmeidler's (1973) theorem on the existence of Nash

equilibria in games with a measure space of players.

In Schmeidler's setting, the set of players T consists of the unit

interval endowed with Lebesgue measure u. Each player's strategy set is

given by the set X = {x e R : x _> 0, Z x. = 1} and the pay-off function
1

1

th I
of the t— player is given by u : L.(y,R ) + R where u (x) = x(t) • h(t,x),

LjCu.R ) denotes the equivalence class of the set of Lebesgue integrable
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Z z z
functions taking values in R , h(t,*) : L (u,R ) * R , and a»b denotes

%
the inner product of a, b e R . We shall refer to games with a measure

space of players as continuum games. We can now present

Definition 3.1 . A Nash equilibrium for a continuum game r is an ele-

Z
ment x* e L,(y,R ) such that for almost all t in T, x*(t) e X and

u (x*) 2 yh(t,x*) for all y z X.

Two points need to be noted about Schmeidler's formalization of

games with a continuum of players. Definitions 1.1 and 1.2 leave

untouched the non-cooperative aspect embodied in a Nash equilibrium.

Given the strategy choices of the other players, the only restriction

on a given player's choice of strategy is the natural one that it be

limited to his strategy set. This is no longer the case in Definition

3.1 where the strategy choices have to obey the further restriction

that they be measurable. (Integrability is an obvious consequence of

measurability given that the compact set X is the same strategy set for

all the players.) This difficulty with the measurability requirement

is also brought out in Dubey-Shapley (1977) and is of obvious signifi-

cance in the modelling of non-cooperative games with a continuum of

players.

A second difficulty concerns the definition of the pay-off func-

tions. Since u (•) is defined on an equivalence class of Lebesgue

integrable functions, it makes sense for almost all players rather than

for all players. This is a simple consequence of the fact that pertur-

bations on a set of measure zero do not change an element x of L..(u,R )
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but do change the value of u (x) for all players in that set of zero

measure. It may be worth remarking that this difficulty does not arise

in the literature stemming from Aumann's (1964, 1966) papers. Of

course, since the equilibrium concepts one is dealing with also neglect

sets of measure zero (even in the Aumann setting), this difficulty is

not of any fundamental significance. It will nevertheless stay with

us when we consider generalizations of Schmeidler's theorem.

We can now present

Theorem 3.1 (Schmeidler) : If, for almost all t in T, h(t,») is weakly

continuous on L.(u,X) and for all x £ L..(y,X), and all i = 1, ....£,

the set {t £ T : h.(t,x) > h.(t,x)} is measurable, there exists a Nash

equilibrium for the continuum game T.

It is fair to say that Debreu's basic argument for the proof of

the Nash-Debreu theorem continues to have relevance for Schmeidler's

theorem. The obvious modification relates to the fact that we are

no longer in the confines of an Euclidean space but in the space

L,(u,R ). Thus, we have to replace Kakutani's fixed point theorem

by

Theorem 3.2 (Fan-Glicksberg) : Let C be a non-empty, compact convex set

in a locally convex space V. If $ is an upper serai-continuous mapping

of C into C and if, for all x, the set $(x) is convex and non-empty,

then there exists a point x^ such that x~ £ $(x~).

Proof ; See Ky Fan (1952) or Glicksberg (1952).
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The proof of Theorem 3.1 revolves around a mapping a : L.(y,X) into

L, (u,X) where

a(x) = {y E L (p,X) : y(t) e a (x) for almost all t in Tj

a : L (y,X) + X where a (x) = Arg Max (p»h(t,x))11
peX

It is clear that a fixed point of a yields a Nash equilibrium. In

order to apply the Fan-Glicksberg theorem to a, one has to establish

the same five claims one established in the proof of Theorem 1.1 with

the only (!) difference that they now pertain to L, (y,X) instead of X.

Let us take each claim in turn after observing that the statement

of Theorem 3.1 already makes clear that the locally convex space we

I 12
shall be working in is L.(u,R ) endowed with its weak topology.

The weak compactness of L (u,X) is a straightforward consequence of

the following classical theorem.

13
Theorem 3.3 (Dunf ord-Pettis) : A subset K of L..(y) has a weakly compact

closure if (and only if) (i) Sup / |f(t)|dX < °° and (ii) given z >

feK T

there is a 5 > such that if y(A) _< 6, then /|f(t)|dX _< z for all feK.

Proof : See, for example, Diestel (1984, p. 93).

I
By viewing L (y,R ) as the space of integrable functions defined on

n

II [0,1] endowed with the n-fold product measure u xy x .... xu, it

i=l

is clear that Theorem 3.3 applies to L.(y,X). Thus all that needs to

be established is that L (y,X) is weakly closed. But this is easy once

we recall
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Theorem 3.4 (Mazur ): If K is a convex subset of a normed linear space,

then the closure of K in the norm topology coincides with the weak clo-

sure of K.

Proof : See Diestel (1984; page 11).

In order to finish the proof of Claim 1, all we need is to observe

is that

(i) L (y ,X) is convex,

(ii) X is a closed set,

p
(iii) a sequence of elements in L (u,R/) tending to a limit in norm

14
has a subsequence tending to that limit almost everywhere.

The nonemptiness of L (u,X) as required by the first part of Claim

2 is trivial as is the convexity of a(x) for a given x in L (u ,X) , as

required by Claim 3.

Claim 3 also asserts that a(x) is non-empty for each x. In order

to establish this, Schmeidler draws on the special structure of his

model. Let T = { t e T : h (t ,x) < h (t ,x)
,
j=l, ...., nl and observe

n J

that U T = T and that e e a (x) where e is a vector with one in

i-1
i i t i

u .th m ,15
the i— place and zero everywhere else. Let S. = T and

i

S = (T / U T ), i=2, ...., n. Given the nature of the pay-off func-

J=l J

tions, y e a(x) where y(t) = e for all t £ S. , for all i.
l l

Since we are working in the compact sets X and L (u,X), Claim 4 on

the upper semicontinuity of a (x) reduces to showing that the graph of

a (•) is closed in X x L.(u,X). But this is straightforward given

the continuity assumption on h (•)•
t
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The final claim relates to the upper semicontinuity of a. This is

clearly the hardest part in the proof of Theorem 3.1. Utilizing again

the weak compactness of L (y,X), we need only show that the graph of a

is closed in L.(y,X) x L (u,X). However, compactness gives us more.

It allows us to establish closedness by considering sequences instead

of nets. In his paper, Schmeidler asserts this fact without offering

any proof but it is worth pointing out that it is a consequence of the

following two results.

Theorem 3.5 (Eberlein-Smulian) : A subset of a Banach space is rela-

tively weakly compact iff it is relatively weakly sequentially compact.

In particular, a subset of a Banach space is weakly compact iff it is

weakly sequentially compact.

Proof : See Diestel (1984; Chapter III).

Theorem 3.6 : Suppose that E is a linear space with a vector topology

which is metrizable and that A is a subset of E with the property that

every sequence of points of A has a weak cluster point in E. Then any

point of the weak closure of A is the weak limit of a sequence of

points of A.

Proof : See Kelley-Namioka (1963; Problem 17L, page 165).

v v
Now in the context of Claim 5, let (x ,y ) be a net converging to

v v
(x,y) where y E a(x )• We have to show that y e a(x). Since the

v v
union of the net (x ,y ) and (x,y) is a weakly compact subset of

L.,(u,X) x L (u,X), it is weakly sequentially compact bv virtue of
x 1

Theorem 3.5. We can now appeal to Theorem 3.6 to extract a sequence
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n n v v
(x ,y ) from (x ,y ) that tends to (x,y). We now need the following

corollary of Theorem 3.4.

Theorem 3.7: If {x } is a sequence in the normed linear space for
n

which the weak limit of x is zero, then there is a sequence {a } of
n n

convex combinations of the x such that o converges to zero in norm.
n n

Proof: See Diestel (198A; page 11) or Dunford-Schwartz (1958; V. 3,14).

Theorem 3.7 along with the reasoning used in the proof of Claim 1

above allows us to conclude that y(t) e X almost everywhere in T.

Suppose, per absurdum, that y(t) t a (x) for all t in S where

y(S) > 0. For each t, a (x) is a convex hull of a subset of

(e , ...., e ). Thus, there is a nonnull, measurable subset V of S
1 n

and a strict subset (e-?,, ...., e. ) of (e, , ...., e ) such that for
"1 xk 1 n

each t in V, y(t) I con (e.^ , ...., e. ) . Hence there is a p e P such

that for all t in V

(i) py(t) > and p^e^ = 0, j = 1, ..., k.

Hence / py(t)du > and / pz(t)dy = for each z z L (u ,P) such that

V V

z(t) e a (x) for all t e V. But weak convergence of y to y implies that
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(ii) / y(t)du = lim / y
n
(t)du,

V n+" V

and hence

(iii) / y(t)du e j lim sup (y (t))dy = {/ z(t)dy : z(t) is a limit

V V
n

V

point of z for almost all t in V}

This clearly gives us a contradiction if we take upper semicontinuity

of a (x) into account.

Only the validity of (iii) still needs to established and this

follows from

Theorem 3.8 (Aumann) : If F-. , F~ .... is a sequence of set-valued

n £
functions from T into ^(R ) that are integrably bounded, then

/ lim sup F (t)du c; lim sup / F (t)du where for any A : T + ?(R ),

/ Ady = {/ f(t)du : f : T •* R is measurable and such that for almost

all t in T, f(t) e A(t)}.

Proof : See Aumann (1965).

4. A Generalization of Schmeidler's Theorem .

Schmeidler's theorem is cast in the set-up of Nash (1950) rather

than that of Debreu (1952). It is thus natural to ask whether it can be

generalized along the lines of Debreu by dropping the assumption of an

identical strategy set and that of the pay-off function being linear

on the player's own strategy set. In the concluding remark in his

paper, Schmeidler sketches such a generalization and briefly indicates

how it may be proved. In this section, we provide a complete argument,

one which uses results not available then to Schmeidler. A principal

motivation for such an exercise lies in the fact that it sets the stage

for our subsequent results; however, it is also of independent interest.
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Let (T,o,y) be a complete, finite measure space, i.e., y is a real

valued, non-negative, countably additive measure defined on a a-field

of subsets of a point set T such that u(T) < °°.

o z
We shall say that a set-valued mapping X : T * vr(R ) Is measurable

r Z 1

if its graph, Graph X = |(t,x) e T x R : x e X(t)} belongs to the pro-

duct a-algebra J$$>(3(R ), where ~(R ) denotes the Borel a-algebra on

I ~ Z Z
R and "~(R ) the space of all subsets of R . We shall say that P is

integrably bounded if the real valued function on T given by t > Sup

{ |

|x| : x z P(t)} is integrable.

A generalized continuum game V consists of a set of players given

by the abstract measure space (T,0,u), a measurable set-valued mapping

-i Z 17
X : T ^ r(R ) and for each t in T a pay-off function u(t,.) : X(t) x

L,(u,X(«)) * R. We have only a marginal modification in the definition

of a Nash equilibrium for a generalized continuum game relative to that

of a continuum game.

Definition 4.1 . A Nash equilibrium of a generalized continuum game T

is an element x* e L-(y,X(«)) such that for almost all t in T

u(t,x*(t),x*) 2 u(t,y,x*) for all y e X(t).

We can now present

Theorem 4.1 (Schmeidler) : Let T = [(t, ,y),X,u] be a generalized con-

tinuum game which satisfies the following assumptions.

(i) X is a measurable, integrably bounded map such that for all t in

T, X(t) is nonempty, convex and weakly compact.
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(ii) u is a map such that

(a) for all x e L.(u,X(»)), u(»,»,x) is a measurable function on

Graph X e {(t,x) z TxR
£

: x e X(t)}

,

(b) for all t in T, for all x e L-(u,X(»))> u(t,»,x) is quasi-

concave on X(t )

,

(c) for all t in T, u(t, # ,') is continuous on X(t) x L, (u,X(»))

where L-(u,X(»)) is endowed with the relative weak topology.

Then the generalized continuum game r has a Nash equilibrium.

At this stage there is little need to remind the reader that the

proof of Theorem 4.1 follows that of Theorem 3.1 with the obvious modi-

fications to the mapping a.

As in the case of Theorem 3.1, it is clear that the Dunford-Pettis

theorem can be used to establish the validity of Claim 1 that L, (u,X(*))

is weakly compact.

The convexity of L.(y,X( a )) is straightforward given the convex

valuedness of the mapping X. The non-emptiness of L.(y,X(»)) is a con-

sequence of the Von-Neumann-Aumann measurable selection theorem. Since

we shall need a more general version of the theorem in the sequel, we

give Sainte-Beuve's (1974) version of this result.

Theorem 4.2 (Von-Neumann, Aumann, Saint e-Beuve

)

; Let (T,3) be a

measurable space and S a Suslin space. Let $ be a set-valued function

from T into non-empty subsets of S, and whose graph belongs to 3 (x, £(S)

,

Then there exists a sequence (a ) of selections of $ such that, for

every t, {a (t)} is dense in $(t) and a is measurable for the comple-

tion of J and i(S).
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Proof : See proof of Theorem III. 22 in Castaing-Valadier (1977).

-I o

Note Chat a Suslin space is a Hausdorff, topological space S such

that there is a continuous surjection from a separable, complete and

raetrizable topological space to S. [For details, see Schwartz (1973),

Chapter II. 1]

The first part of Claim 3 that cc(x) is convex for a given x in

L,(y,X(»)) is straightforward since the pay-off's are quasi-concave

in the relevant argument. Nonemptiness of a(x) is a consequence of

Theorem 4.2 once we show that a (x) has a measurable graph. The fol-

lowing theorem, which may be looked on as a measure-theoretic cousin of

Berge's theorem, seems ideally suited for this.

Theorem 4.3 (Castaing-Valadier) : Let (T,3) be a measurable space,

S a Suslin space, u : T x S * R a J(g) *(S) measurable function and

$ a measurable set-valued function from T into P(S). If for every t,

*?(t) = Arg Max u(t,x) is nonempty, then the graph of f belongs to

X£$(t)

J x B(S) where 3 denotes the completion of J.

Proof : See Lemma III. 20 and the Application in Castaing-Valadier (1977).

Claim 4 on the upper semi-continuity of a : L..(y,X(»)) > X(t) is

an easy consequence of Berge's theorem; our Theorem 1.2.

The final claim on the upper semi-continuity of a : L
1
(y,X(«)) *

L,(u,X(»)) can be established as a consequence of the following theorem.

Theorem 4.4 (Artstein) : If a uniformly integrable sequence (f ) chosen

from L..(u,R ) converges weakly to g, then there exists a set B of

19
measure zero such that g(t) e con lira sup (f (t)) for all t in T / B.
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Proof : See Proposition C in Artstein (1979).

i
Recall that a subset K of L (u,R ) is uniformly integrable if for every

e > 0, there exists 5 > such that for all A e O , p(A) _< 5 implies

| |J f(t)du || < e for all f in K.

A
As in the proof of Claim 5 in the context of Theorem 3.1, let a

sequence (x ,y ) converge to (x,y) where y £ ct(x ). Suppose per

absurdum that there exists a set S of nonnull measure such that

y(t) £ a(x) for all t in S. But for any t, upper semicontinuity of

a (•) implies that y(t) £ a (x) where y(t) £ lim sup (y (t)). Since

a (x) is convex valued, certainly con lira sup (y (t)) £ a (x). We can

now apply Artstein's theorem to get a contradiction and complete the

proof.

At this stage, a natural question arises as to whether one can fur-

nish a proof of Claim 5 without appealing to Artstein's theorem. In

other words, one may ask how Schmeidler could have proved Claim 5 in

1973. A possible answer is given below. In addition to Aumann's

theorem, it relies on the following classical theorems.

Theorem 4.5 (Steinhaus-Dunf ord) ; If (T,3,u) is a a-finite measure

space, there is an isometric isomorphism between (L.(ij))* (the space of

continuous, linear functions on L-(u)) and L (y) (the space of essen-
CO

tially bounded measurable functions) in which corresponding vectors x*

and g are related by the identity

x*(f) = / g(t)f(t)dy f £ L
x
(u).

T

Proof ; See Dunford-Schwartz (1958, IV. 8. 5).



-21-

Theorem 4.6 (Hahn-Banach) ; If K and K are disjoint closed convex

subsets of a real locally convex linear topological space V, and if K,

is compact, then there exist constants c and e > and a continuous

linear functional f on V such that

f(K
2

) _< c - e < c <_ f(K ).

Proof; See Dunf ord-Schwartz (1957, V.2.10).

Now let (x , y ) converge weakly to (x,y) such that y e a(x ) fornn y ' n n

all n. Suppose per absurduni that there exists a nonnull set S e J such

that y(t) i a (x) for all t in S. Now denote the restriction of J and

U to S by .j-, u<, respectively and let a„(x) = {z £ L.(y_) : z(t) e a (x)

for all t in s} . a<,(x) can be shown to be nonempty, convex and weakly

closed by using the arguments utilized in the proof of our earlier

claims.

Let y be the restriction of y to S. By hypothesis, y„ i ouCx).

We can now apply Theorem 4.6 to claim the existence of a non-zero,

continuous linear functional f such that

(i) f(yo) ^ f(z) fo r all z in ouCx).

By Theorem 4.5 we can represent f by g £ L (y,R ) and rewrite (i) as

(ii) / (y(t)-g(t))du > / (z(t)-g(t)) V z e a_(x)

S S
b

Since y converges weakly to y, certainly
n

(iii) lim / (y (t)-g(t))dy = / (y(t)-g(t))dy
S S

We can now appeal to Aumann's theorem, Theorem 3.6 above, to assert that
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(iv) / (y(t)»g(t))du o/ lira sup (y (t)«g(t))dy
S s

n

Since lira sup (y (t)*g(t)) = (lim sup y (t) • (g(t)) and each limit

point of y (t) is in a (x) from Claim 4, we obtain the required
n t

contradiction.

5. The Shafer-Sonnenschein Theorem with a Continuum of Players

In this subsection we present a generalization of the Shafer-

Sonnenschein theorem to a setting where the set of players is given by

the measure space (T,J,u). Our result could be alternatively viewed as

a generalization of Schmeidler's theorem to a setting where the pay-off

functions are replaced by non-ordered preference rankings.

As in Shafer-Sonnenschein, we work with an abstract economy. How-

ever, in our generalized set-up, a precise definition is warranted.

Definition 5.1 ; An abstract continuum economy T is a quadruple

[(T, ,u), X, A, P] where (T, ,y) as in Section 4, X : T •* !?(R ),

A : T x LjOi ,!(•)) *£(X(t» and P : T x I^Oi.XCO) -> ?(X(t)).

As in Section 2, for each t in T, X(t) is the t— player's strategy

set, and for any x e L , (u,X(»)), A(t,x) is the choice set of player t

which, given the actions x of all other agents, determines the subset

of X(t) from which t chooses his strategy. P is a preference corre-

spondence with the obvious interpretation that P(t,x), x z L..(y,X(«))

is the "better-than-set" of agent t with x(t) as the point of reference.

However, it is worth emphasizing that the difficulty about the inter-

pretation of the pay-off functions that we discussed in Section 3, is

also present here. For any given x, the interpretation of P(t,x) can
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be sustained only for almost all agents simply because P(t,«) is

defined on a space of equivalence class of functions.

Definition 5.2 . A Nash equilibrium of an abstract continuum economy r

is an element x* e L-(ii,X( # )) such that for almost all t in T

x*(t) e A(t,x*) and A(t,x*)n P(t,x*) =
<J>

.

We can now state

Theorem 5.1 (Khan-Vohra) : Let an abstract continuum economy V given by

[T,J,u), X, A, P] satisfy the following assumptions.

1. (T,J,u) is a finite, positive, complete measure space such that

L,(u) is separable.

2. X is an integrably bounded measurable map such that for all t in T,

X(t) is nonempty, convex and compact.

3. A is a map such that

(a) for all x in L. (u,X(» )), the graph of A(»,x) belongs to

(b) for all t in T and for all x in L- (u ,X( • )) , A(t,x) is a non-

empty, closed and convex subset of X(t),

(c) for all t in T, A(t, # ) is a continuous correspondence.

A. P is a map such that

(a) the graph of P(-,«) belongs to 3 g&O^Cv.XO)) ®&(R*),

(b) for all t in T, the graph of P(t,«) is open in the set X(t) x

I^Cy.XC-)),

(c) for almost all t in T, for all x in L, (u ,X( • ) ),

x(t) i con P(t,x).
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Then there exists a Nash equilibrium for an abstract continuum economy r

It should be evident that the proof of Theorem 5.1 follows the

proof of Theorem 4.1 provided we can construct a pseudo pay-off

function. However, this is not as easily accomplished as in Section 2.

To begin with, we shall need the following theorems.

Theorem 5.2 ; The weak topology of a weakly compact subset A of a

separable Banach space is a metric topology.

Proof : See the proof of Theorem V.6.3 in Dunford-Schwartz (1958).

Theorem 5.3 : Let (T,J) be a measurable space, V a separable metric

space, and $ is a set-valued mapping from T to nonempty, complete sub-

sets of V. Then the following properties are equivalent.

(a) d(x,$(')) is measurable for every x e V where d is the dis-

tance from x to any subset of V.

(b) $ admits a sequence of measurable selections (a ) such that for
n

all t in T, (a (t)) is dense in $(t).
n

Proof : See the proof of III. 9 in Castaing-Valadier (1977).

Theorem 5.4 : Let (T,J) be a measurable space, U a metrizable space,

V a separable metrizable space and u : T x V »> U. If u is measurable

(respectively (*/,S(U)) measurable) in t and continuous in V, then u is

measurable (respectively ( J(g)6i(V) , &(U)) measurable).

Proof : See the proof of Lemma III. 14 in Castaing-Valadier (1977).

We are now ready to construct our pseudo pay-off function as
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u(t,y(t),x) = Inf p((y(t),x),z)
zeGp(t)

where G (t) refers to the graph of the complement of P(t,«) and p is

the metric that induces the product topology on R x L.. (y,X( • )) • The

fact that u(t,*,») is weakly continuous on L..(y,X(«)) and continuous on

X(t) follows from an application of Berge's theorem (Theorem 1.2 above)

once we observe that L.djjXC*)) is weakly compact. The fact that such

a metric exists follows from the weak compactness of L. (u,X( • )) , the

separability of L..(u) and Theorem 5.2 above.

In order to show that u (»,»,x) is jointly measurable on T x R , we

simply apply Theorems 4.2, 5.3 and 5.4 above.

In adapting the proof of Theorem 1.1 to prove Theorem 5.1, we note

from the discussion in Section 2 that a represents the convex hull of a

the best response correspondence of the player t. It was precisely

this fact that necessitated the use of the result that the convex hull

of an upper semicontinuous map is also upper semicontinuous. We need

a similar result for a measurable correspondence. Fortunately, this is

available in Hildenbrand (1974, p. 60).

A natural question arises at this stage as to whether Theorem 5.1

can be proved without the requirement on the measure y that L..(u) be

separable. The answer to this question is positive if we are allowed a

marginal strengthening of assumption 4 in the statement of Theorem 5.1.

Theorem 5.2 (Khan-Vohra) ; Theorem 5.1 is valid iff (1) and 4(a,b) are

substituted by

(1)' (T,0,y) is a finite, positive, complete measure space,
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4(a)' for all x in L (u,X(«))> the graph of P(»,x) belongs to

4(b)' for all t in T, P°(t,*) : L.(y,X(«)) * X(t) is a continuous

correspondence.

Under these changed hypotheses, the only change required in the

proof of Theorem 5.1 pertains to the construction of the pseudo pay-off

function. This is now given by

u(t,z,x) = d(z,P (t,x)) for any x e L (u,X(«)).

Note that d(z,P (t,x)) = Inf p(x,y) where p is the Euclidean
yeP

C
(t,x)

metric on R . Since p is a continuous function of its arguments and

P (t,») is a continuous correspondence by hypothesis, we can appeal to

Theorem 1.2 to assert that d(»,P (t,x)) is continuous and d(z,P (t,»))

is weakly continuous. Indeed, Berge's theorem shows that d(»,P (t,«))

is jointly continuous with respect to these topologies.

All that remains is to show that d(»,P (* ,x)) is jointly measurable

I
on R x T for any given x e L... (u,X( • ))• But on using assumption 4(a)',

this follows from Theorem 4.2, 5.3 and 5.4 above.

6. Games on a Banach Space .

So far, we have restricted our attention to games whose strategy

sets lie in a finite dimensional space. In this section, we relax this

assumption and allow strategy sets to be subsets of a real Banach

space. Recall that a Banach space is a complete norraed linear space.

It is also worth observing that a separable Banach space is a Suslin

. fJ . ..-,-, .20
space since the identity mapping is trivially surjective.
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We shall work in the framework of generalized continuum games

discussed in Section 4. A generalized continuum game on a Banach space

is defined as a generalized continuum game with the only difference

being that the range of X is a Banach space. The definition of a

measurable set-valued mapping is now modified to refer to the (norm)

I
Borel a-algebra of the Banach space rather than R . The definition of

an integrably bounded map remains unchanged from that of Section 4 as

indeed does the definition of a Nash equilibrium. We need only specify

that for any Banach space E, L.(y,E) now stands for the space of all

(equivalence classes of) E-valued Bochner integrable functions f

21
defined on T with / |f(t)||dy < °°. It is well known that L,(u,E) is

T

a Banach space under the norm I'lli wnere

I 1*1
Ijl
-/ l|f<t>||du

T

The weak topology on L, (u,E) figures prominently in our next result.

Theorem 6.1 . Let T = [(T,3,u ) ,X,u] be a generalized continuum game

defined on a Banach Space E and let Y satisfy the following assumptions.

(i) E is separable,

(ii) X is a measurable, integrably bounded map such that for all t in

T, X(t) is nonempty, closed convex subset of a weakly compact

set K,

(iii) u is a map such that

(a) for all x e L..(u,X(»))> u(«, # ,x) is a measurable function on

Graph X,
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(b) for all t in T, for all x in L. (u ,X( • )) , u(t,*,x) is quasi-

concave on X(t )

,

(c) for all t in T, u(t,»,«) is continuous on X(t) x L,(u,X(«))

where the latter is endowed with the product of the relative

weak topologies.

Then the generalized continuum game F has a Nash equilibrium.

A proof of Theorem 6.1 can be based on that of the proof of Theorem

4.1 which itself goes back to the proofs of Theorems 3.1 and 1.1. As

before, we consider a mapping a : L (y,X(»)) * L..(y,X(*)) where

a(x) = {y z L.(u,X(»)) *• y(t) E a (x) for almost all t in T}

a (x) : L (y,X(»)) > X(t) where a (x) = Arg Max u(t,y,x).
yeX(t)

It is clear that a fixed point of a yields a Nash equilibrium and

thus we need to verify that the Fan-Glicksberg theorem can be applied.

Towards this end, let us consider Claim 1 whereby it is asserted that

L.(u,X(«)) is weakly compact. The fact that this is indeed so is

established by the following result.

Theorem 6.2 (Diestel) : Let K be a weakly compact subset of a Banach

space E. Then L,(y,K) is weakly compact in L..(u,E).

Proof ; See Diestel (1977) or, for an alternative proof based on James'

theorem, see Khan (1984).

Claim 2 asserts the nonemptiness and convexity of L.. (u,X(» )) • The

latter is straightforward given the convex valuedness of X. Nonempti-

ness follows from the measurable selection theorem (Theorem 4.2 above) and
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the fact that X is integrably bounded. Note that in this context, one

is utilizing the following simple but useful result.

Theorem 6.3 ; A measurable function f : T E is Bochner integrable if

and only if / |f(t)
|

|dy < °°.

T

Proof ; See Diestel-Uhl (1977, p. 45).

Claim 3 asserts the nonemptiness and convexity of a(x) for each x

in L (u,X(«)). For this we have to show first that for each x in

L.(u,X(»)) and for almost all t in T, a (x) is nonempty and convex.

This is straightforward given the weak compactness of X(t), weak

continuity of u(t, # ,x) and the fact that u(t, # ,x) is quasi-concave on

X(t). However, to show that a(x) is nonempty, we have yet to establish

that a (x) is a measurable set valued map. As in Section A, the

Castaing-Valader theorem establishes this. An appeal to the selection

theorem completes the proof of the claim.

As in Section 4, Claim 4 on the upper semicontinuity of a (•) on

L (u,X(«)) is an easy consequence of Berge's theorem (our Theorem 1.2).

The final claim on the upper semicontinuity of a can be established

by using the following generalization of Artstein's theorem on weak

sequential convergence.

Theorem 6.3 (Khan-Majumdar) ; Let {f } be a sequence from L.(u,X(»)) such

that for all t in T, and for all n, f (t) e K, K weakly compact. If {f
}

22 —

—

converges weakly to f, then almost everywhere in ' T, f(t) E co Ls{f (t)}.

Proof ; See proof of Theorem 1 in Khan-Majumdar (1984).



-30-

The argument showing how Theorem 6.3 can be used to prove Claim 5

is identical to the one based on Artstein's theorem and used in Section

4. A proof of Claim 5 completes the proof of Theorem 6.1.

One restrictive aspect of Theorem 6.1 is the requirement that all

strategy sets must be subsets of the same weakly compact set K. This

is, of course, less restrictive than the Nash-Schmeidler assumption of

identical strategy sets for all traders but, as we saw in Sections 1

and 4, in an Euclidean setting this can be viewed as an expositional

simplification and relaxed at no additional cost. It is not clear

whether this is the case in an infinite dimensional setting. However,

before we discuss this observation, it is worth pointing out that such

a requirement allows our theorem to apply to some non-separable spaces.

Theorem 6.4 ; Theorem 6.1 is valid if

(i) is replaced by (i)' or (i)" where

(i) 1 E is L (v), the space of essentially bounded measurable functions
00

on a finite, measure space (ft ,
,v)

(i)" E is the dual of a separable Banach space.

Note that if the measure space (ft, ,v) is such that L.(v) is

23
separable, the above theorem need only be proved for (i)".

Theorem 6.4 can be deduced from Theorem 6.1 with the help of the

following results.

Theorem 6.5 (Rosenthal) ; Let (ft, ,v) be a finite measure space. Then

every weakly compact subset of L (y) is norm separable.

Proof ; See, for example, Diestel-Uhl (1977, p. 252).
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Theorem 6.6 ; Let E be a Banach space which is the dual of a separable

space. Then every weakly compact subset of E is norm separable.

Proof ; See, for example, Wilansky (1978, problem 9.5.113).

We now return to the question of relaxation of the assumption that

each trader's strategy set is a subset of a weakly compact set. Our

next result is an answer to this question.

Theorem 6.7 ; Theorem 6.1 is valid if (ii) 1 is substituted for (ii)

where

(ii)' X is a measurable integrably bounded map with weakly compact

convex values and such that for all e > 0, there exist T eo,
e

u(T - T ) < e; a uniformly bounded integrable subset J of L (u | ),

e

and a weakly compact subset K ^ E such that x e L..(u,X(»)) implies

x(t) = T X f (t)x for almost all t in T, with scalars X such thatL n n n ' n
n

TlX <l,f eJ andx e K .L
' n 1 — ' n e n e

n

The generality of (ii)' can best be appreciated in steps. The

first extension of the assumption that all the strategy sets sit in

the same weakly compact subset K of E is to allow this compact set to

change in a manner which is regulated by an integrable function f,

i.e., X(t) £ f(t)K. Such an assumption occurs, for example, in

Castaing's work; see [Castaing-Valadier (1977, Corollary V.4)]. The

next step is to allow this change to be regulated not by one integrable

function but by a countably infinite number chosen from a bounded,

integrable family J, i.e., X(t)c 5" X f (t)x where X are scalars— L n n n n
n

such that |X < 1, f e J and x e K. The final step is to allowu
• n 1 — • n n

n
for the fact that the above representation does not obtain for the
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strategy set of every trader and that there is a subset of traders T

with y(T ) < e whose strategy sets do not fit in this mould. Once we

allow e to take on arbitrarily small values and index J and K by e, we

obtain condition (ii)'.

Assumption (ii)' causes the proof of Theorem 6.1 to fail on two

counts. First, in the context of Claim 1, we need a generalization of

Diestel's theorem to establish weak compactness of L. (y ,X( • ))• Second,

we need a corresponding generalization of Theorem 6.3 to establish

Claim 5.

Our first difficulty is overcome by another result of Diestel.

Theorem 6.8 (Diestel) ; Let X be a mapping from T into a Banach space E

which satisfies (ii) of Theorem 6.7. Then L. (y ,X( • )) is weakly compact.

Proof : See Diestel (1977).

Our second difficulty can be handled by providing an alternative

proof of Claim 5, a proof that does not utilize Theorem 6.3. We saw the

structure of such an alternative proof in Section 4. We need the fol-

lowing theorem in order to apply it in our set-up.

Theorem 6.9 (Dieudonne-Tulcea-Tulcea) ; If (T,"J,y) is a complete,

finite measure space, and E is a Banach space, there is an isometric

isomorphism between (L,(y,E))* (the space of continuous linear func-

w
tions on L_(ji,E)) and L (y,E*) (the space of equivalence classes of

essentially bounded, weak* measurable functions on T) in which corre-

sponding vectors x* and g are related by the identity

x*(f) - / < g(t), f(t) > dy f e L (y,E).

T
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Proof : See Tulcea-Tulcea (1962).

We can now mimic the argument in the last two paragraphs of Section

4 with the Dieudonne-Tulcea-Tulcea theorem substituted for the Banach-

Steinhaus Theorem.

Our next result shows the extent of variability of the strategy

sets that is allowed under a restriction on the underlying Banach

space. We shall say that a Banach space E has the Radon-Nikodym

property (henceforth RNP) with respect to (T,3,p) if for each u-

continuous vector measure G : J •>• E of bounded variation, there exists

g £ L (u,E) such that G(A) = / g(t)dy for all A e J . E is said to

A
24

have RNP if E has RNP with respect to every finite measure space.

We can now state

Theorem 6.10 : Theorem 6.1 is valid of (i)' and (ii)' are substituted

for (i) and (ii) where

(i)' E is a separable Banach space whose dual has RNP

(ii)' X is a measurable, integrably bounded map such that for all t in

T, X(t) is nonempty, convex and weakly compact.

Everything is in place for a proof of Theorem 6.10 other than a

proof of Claim 1 on the weak compactness of L,(u,X(»)). This is fur-

nished by the following result.

Theorem 6.11 : Let E be a separable, Banach space such that E* has RNP.

Let X : T -*• (?(E) be an integrably bounded, measurable mapping such that

for almost all t in T, X(t) is a nonempty, weakly compact convex subset

of E. Then, the set L (u,X(»)) is weakly compact.
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Proof : See proof of Theorem 1 and Corollary in Khan (1982).

It is by no means clear that Theorem 6.7 and 6.11 extend to L (y)
CO

and to spaces which are duals of separable Banach spaces. Thus, it is

worthwhile to have a result which pertains primarily to such spaces.

It is of interest, though maybe not surprising, that we can present

such a result without insisting on weak compactness of the strategy

25
sets but only that they be norm bounded and weak* closed.

Theorem 6.12 : Let V = [(T,3 ,y) ,X,u] be a generalized continuum game

defined on a Banach space E* and let T satisfy the following assump-

tions.

(i) E* is the dual of a separable Banach space,

(ii) X is a measurable, integrably bounded map such that for all t

in T, X(t) is nonempty, convex, weak* closed subset of a norm

bounded set K.

(iii) u is a map such that

w
(a) for all x z L^ (u,X(«)), u(«,«,x) is a measurable function

on Graph X,

(b) for all t in T, for all x in L
W

(u,X(«)), u(t,«,x) is
00

quasi-concave on X(t),

(c) for all t in T, u(t,*,«) is continuous on X(t) x L^ (u,X(«))

where the latter is endowed with the product of the relative

weak* topologies on both components,

(iv) the raeasurability assumptions on X and u are interpreted with

respect to the weak* Borel a-algebra on E*.

Then the generalized continuum game T has a Nash equilibrium.
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The basic outline of the proof of Theorem 6.12 is the same as that

of the proof of Theorem 6.1 other than the fact that we now work with

w
the weak* topology on L^ (u,X(-)). Note that L..(y,E) is a predual of

L (y,E*) is precisely the Dieudonne-Tulcea-Tulcea theorem. In view of

the mathematical machinery accumulated so far, the only difficult part

w
of the proof relates to the weak* compactness of L (y,E*) as required

for Claim 1. This follows from

Theorem 6.13 (Castaing-Valadier) ; For all t in T, let X(t) be nonempty,

convex, weak* closed subsets of a norm bounded set K C E*. Then

w w
L (y,X(»)) is a weak* compact subset of L (u,E*).

Proof ; Follows from Theorem V.l in Castaing-Valadier (1977).
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Footnotes

1. It may be noted here that an year earlier Nash (1951) also furnished

an existence proof based on the Brouwer fixed point theorem but for

his set-up with linear pay-off functions and an identical strategy

set.

2. See Arrow-Debreu (1954).

3. Consistency demands that we refer to the Nash set-up with linear

pay-off functions and an identical strategy set as a game and the

generalized setting studied in Debreu (1952) as a generalized

game . However, we follow conventional usage.

4. A general guiding principle has been to state and reference all

results not found in Hildenbrand' s (1974) book.

I
5. R denotes 5,-dminensional Euclidean space.

6. For definition of an upper semicontinuous multivalued mapping see

Berge (1966, Chapter VI). It should be noted that Hildenbrand

(1974) and subsequent authors also use the terra upper herai-

continuous synonymously.

7. For details, see 3erge (1966, Chapter VI) and Hildenbrand (1974,

Part I, Bill).

c c c
8. Graph P should really be written as (Graph P ) where A is the

I Z
complement in R of the set A C R .

9. See, for example, Hildenbrand (1974, page 26). Note that one also

needs the qualification that the relevant mapping is compact

valued.
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1
10. L (u,X) is a subset of L (u,R ) such that f e L (u,X) implies

f(t) e X for almost all t in T.

11. The reader is invited to compare the mapping a with the corresponding

one in Section 1 above.

12. For an introduction to the weak, topology of a Banach space, see,

for example, Diestel (1984, Chapter II).

13. L,(u) is intended to abbreviate L,(y,R).

14. See, for example, Dunford-Schwartz (1958, III. 3. 6 and III. 6. 3).

15. For sets A and B, A/B denotes set-theoretic subtraction.

16. See Berge (1966, Corollory on p. 114).

17. L
1
(y,X(»)) denotes the set of integrable functions f such that

almost everywhere in T, f(t) e X(t). In terms of this notation,

X in L.djjX) refers to a constant correspondence with value X.

18. Note that a separable Banach space endowed with the weak topology

is Suslin even though it is not globally metrizable.

19. Note that lim sup (f (t)) has already been defined as the set of
n

limit points of (f (t)) in the steps prior to Theorem 3.6.

20. Footnote 18 is also relevant here.

21. For details on Bachner integration, see Diestel-Uhl (1977, Chapter II)

22. co denotes closed convex hull.

23. Conditions on the measure space which imply this can be found, for

example, in Dieudonne (1970, theorem 13.11.6) and Dunford-Schwartz

(1958, problem III. 9. 6).

24. For a detailed discussion of RNP, see Diestel-Uhl (1977). In par-

ticular, the reader is referred to pages 217-219 of this reference.

25. For an introduction to the weak* topology on Banach spaces, see for

example, Diestel (1984, Chapter II).
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